Solar-assisted Post-combustion Carbon Capture feasibility study
Marwan Mokhtar,
Muhammad Tauha Ali,
Rajab Khalilpour,
Ali Abbas,
Nilay Shah,
Ahmed Al Hajaj,
Peter Armstrong,
Matteo Chiesa and
Sgouris Sgouridis
Applied Energy, 2012, vol. 92, issue C, 668-676
Abstract:
Solvent-based Post-combustion Carbon Capture (PCC) is one of the promising technologies for reducing CO2 emissions from existing fossil-fuel power plants due to ease of retrofitting. A significant obstacle in widely deploying this technology is the power plant output reduction (Output Power Penalty – OPP) due to the energy intensive CO2 separation process. In this paper we propose and theoretically evaluate a system to reduce the OPP by providing part of the PCC energy input using solar thermal energy. It is hypothesized that reducing the OPP during the daytime coincides with peaks in wholesale electricity prices thus increasing the revenue stream for a solar-assisted PCC (SPCC) plant. The general framework for assessing and sizing an SPCC system is presented. A techno-economic assessment is performed as a case study for a 300MWe pulverized coal power plant in New South Wales, Australia using actual weather and wholesale electricity price data. It is shown that the proposed technology can be economically viable for solar collector costs of US$100/m2 at current retail electricity prices and optimal Solar load-Fraction (SF) of 22% (SF is the portion of solvent regeneration energy provided by solar energy). The convergence of increasing electricity prices and decreasing collector costs improves SPCC viability at higher SF.
Keywords: Post-combustion Carbon Capture; Solar assisted; Solar load fraction; Energy penalty; Coal-fired power plants (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911004776
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:92:y:2012:i:c:p:668-676
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.07.032
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().