Optimization of a solar driven absorption refrigerator in the transient regime
Mouna Hamed,
Ali Fellah and
Ammar Ben Brahim
Applied Energy, 2012, vol. 92, issue C, 714-724
Abstract:
This contribution deals with the theoretical study in dynamic mode of an absorption refrigerator endoreversible model. The system is a cold generating station driven by solar energy. The main elements of the cycle are a refrigerated space, an absorption refrigerator and a solar collector form. A mathematical model is developed. It combines the classical thermodynamics and mass and heat transfers principles. The numerical simulation is made for different operating and conceptual conditions. A global minimizing time optimization is performed in view to reach maximum performances. Appropriate dimensionless groups are defined. The results are presented in normalized charts for general applications. The collector temperature presents major influence on the conceptual and functional characteristics compared to the stagnation temperature influence. On the other hand the thermal load in the refrigerated space and the thermal conductance of the walls has analogous effects, therefore important to be considered in actual design. As a result, the model is expected to be a useful tool for simulation, design, and optimization of solar collector based energy systems.
Keywords: Refrigeration; Absorption; Endoreversible; Optimization; Transient regime (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911005083
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:92:y:2012:i:c:p:714-724
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.08.012
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().