Ongoing commissioning of water-cooled electric chillers using benchmarking models
Danielle Monfet and
Radu Zmeureanu
Applied Energy, 2012, vol. 92, issue C, 99-108
Abstract:
This paper proposes two different types of benchmark models for the comparison of energy performance of water-cooled electric chillers: correlation-based models and Artificial Neural Network (ANN) models. Different techniques are proposed to establish the models and are evaluated with data collected from two chillers installed in an existing central cooling and heating plant. Both chillers have identical capacity and performance characteristics; however, they have quite different operating hours. The results show that models developed in this case study with 7days of data monitored at the beginning of the summer season provide accurate results over the remaining of the summer and for the following summer. The proposed Multivariable Polynomial (MP) models for chillers provide the most accurate prediction with CV(RMSE) below 7% over the remaining of the summer season, and below 8% for the following summer season.
Keywords: Ongoing commissioning; Chiller; Benchmarking (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911006738
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:92:y:2012:i:c:p:99-108
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.10.019
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().