EconPapers    
Economics at your fingertips  
 

A study towards “greener” construction

G. Bassioni

Applied Energy, 2012, vol. 93, issue C, 132-137

Abstract: The manufacture of cements with several main constituents is of particular importance with regard to reducing climatically relevant CO2 emissions in the cement industry. This ecological aspect is not the only argument in favor of Portland composite cements; they are also viable alternatives to Portland cement from the technical point of view. Substitution of ordinary Portland cement (CEM I) by Portland composite cements (CEM II) and (CEM III), which clearly possess different chemical and mineralogical compositions, results in changes of their reaction behavior with additives like superplasticizers. A common admixture to CEM I in that sense is limestone (industrial CaCO3); its interaction with polycarboxylates is ignored and its inertness is taken for granted. This study provides a systematic approach in order to better understand the interaction of these polymeric superplasticizers with CaCO3 by adsorption and zeta potential measurements. The results give some fundamental understanding in how far the cement industry can reduce the production of cement clinker by replacing it with limestone as admixture and consequently the CO2 emission is reduced, which is of high political and environmental interest.

Keywords: Green construction; Limestone; CO2 emission (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261910003776
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:93:y:2012:i:c:p:132-137

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2010.09.012

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:132-137