EconPapers    
Economics at your fingertips  
 

Modeling of a solar powered absorption cycle for Abu Dhabi

A. Al-Alili, M.D. Islam, I. Kubo, Y. Hwang and R. Radermacher

Applied Energy, 2012, vol. 93, issue C, 160-167

Abstract: In this study, the feasibility of a solar powered absorption cycle under Abu Dhabi’s weather conditions is assessed. Utilizing solar energy is very attractive since the cooling requirements are in phase with the solar energy availability. Using solar driven air conditioners would also reduce the dependence on fossil fuel based energy. The proposed system uses evacuated tube collectors to drive a 10kWc ammonia–water absorption chiller. Transient systems simulation of the complete system is carried out in order to select and size different system components. Based on the thermal analysis, the solar air conditioner system has a specific collector area of 6m2/kWc and a specific tank volume of 0.1m3/kWc. The selected system size requires about 47% less electrical energy than the widely spread vapor-compression cycles of the same cooling capacity. In addition, economical analysis is performed for three electricity costs. The collector area is found to be the key parameters in reducing the payback period of the initial investment. Moreover, the proposed system is found to reduce 12metric tons/year of CO2 emissions due to its energy savings.

Keywords: Ammonia–water absorption chiller; Evacuated tubes; UAE; TRNSYS (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261910004976
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:93:y:2012:i:c:p:160-167

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2010.11.034

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:160-167