EconPapers    
Economics at your fingertips  
 

A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting

Ling Tang, Lean Yu (yulean@amss.ac.cn), Shuai Wang, Jianping Li and Shouyang Wang

Applied Energy, 2012, vol. 93, issue C, 432-443

Abstract: In this paper, a novel hybrid ensemble learning paradigm integrating ensemble empirical mode decomposition (EEMD) and least squares support vector regression (LSSVR) is proposed for nuclear energy consumption forecasting, based on the principle of “decomposition and ensemble”. This hybrid ensemble learning paradigm is formulated specifically to address difficulties in modeling nuclear energy consumption, which has inherently high volatility, complexity and irregularity. In the proposed hybrid ensemble learning paradigm, EEMD, as a competitive decomposition method, is first applied to decompose original data of nuclear energy consumption (i.e. a difficult task) into a number of independent intrinsic mode functions (IMFs) of original data (i.e. some relatively easy subtasks). Then LSSVR, as a powerful forecasting tool, is implemented to predict all extracted IMFs independently. Finally, these predicted IMFs are aggregated into an ensemble result as final prediction, using another LSSVR. For illustration and verification purposes, the proposed learning paradigm is used to predict nuclear energy consumption in China. Empirical results demonstrate that the novel hybrid ensemble learning paradigm can outperform some other popular forecasting models in both level prediction and directional forecasting, indicating that it is a promising tool to predict complex time series with high volatility and irregularity.

Keywords: Nuclear energy consumption forecasting; Hybrid ensemble learning paradigm; Ensemble empirical mode decomposition (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (56)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911008269
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:93:y:2012:i:c:p:432-443

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.12.030

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:432-443