Heat loss characteristics of trapezoidal cavity receiver for solar linear concentrating system
Sendhil Kumar Natarajan,
K.S. Reddy and
Tapas Kumar Mallick
Applied Energy, 2012, vol. 93, issue C, 523-531
Abstract:
In this paper, a numerical study of combined natural convection and surface radiation heat transfer in a solar trapezoidal cavity absorber for Compact Linear Fresnel Reflector (CLFR) is presented. The CFD package, FLUENT 6.3 is used to develop the 2-D, non-Boussinesq, steady state, laminar, combined natural convection and surface radiation heat transfer model for a trapezoidal cavity absorber. The validation of the present non-Boussinesq numerical procedure is compared with other closed cavity model. Based on the validated non-Boussinesq model, the combined heat loss coefficients are predicted for various parameters such as Grashof number, absorber angles, surface emissivity, aspect ratio, temperature ratio and radiation–conduction number. The numerical simulation results are presented in terms of Nusselt number correlation to show the effect of these parameters on combined natural convection and surface radiation heat loss.
Keywords: Non-Boussinesq; Combined natural convection and surface radiation; Nusselt number correlation; Trapezoidal cavity absorber; CLFR (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911008063
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:93:y:2012:i:c:p:523-531
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.12.011
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().