Evaluation of the suitability of empirically-based models for predicting energy performance of centrifugal water chillers with variable chilled water flow
Tzong-Shing Lee,
Ke-Yang Liao and
Wan-Chen Lu
Applied Energy, 2012, vol. 93, issue C, 583-595
Abstract:
This study evaluates the performance prediction ability and model suitability of eleven empirically-based performance models for centrifugal water chillers. Specifically, this study uses over 2000 datasets with a constant or variable chilled water flow rate for fixed or variable speed drive centrifugal liquid chillers. The best regression coefficients for each empirical-based model were obtained using the ordinary least squares (OLSs) method. The model prediction accuracy of each empirical-based model is based on the coefficient of variation of root-mean-square error (CV). The evaluation for model suitability is based on the considerations of prediction ability, the complexity in training datasets, the effort needed to calibrate, the generality of the model, and its ability to physically interpret the model regression coefficients in this study. Results show that among the eleven empirical-based models, the BQ (CV=0.54%), MP (CV=0.61%), SMP (CV=0.70%), and MDOE-2 (CV=0.63%) models have overall prediction CV values under 1% for all kinds of datasets and achieve extremely good prediction accuracy. Because the MDOE-2 model has a more complicated datasets training process than the BQ, MP, and SMP models, and it has no ability to physically interpret the model regression coefficients, the BQ, MP, and SMP models have the best suitability. The results of this study provide important reference values for selecting empirically-based performance models for energy analysis, optimal operating control, energy efficiency measurement and verification (M&V), and the development of fault detection and diagnosis (FDD) systems in centrifugal water chillers.
Keywords: Centrifugal water chiller; Variable speed driver; Variable chilled water flow; Performance model; Energy performance (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911007951
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:93:y:2012:i:c:p:583-595
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.12.001
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().