EconPapers    
Economics at your fingertips  
 

Investigation on crystallization of TiO2–water nanofluids and deionized water

Songping Mo, Ying Chen, Lisi Jia and Xianglong Luo

Applied Energy, 2012, vol. 93, issue C, 65-70

Abstract: Two titania–water (TiO2–water) nanofluids were prepared by dispersing TiO2 nanoparticles in rod shapes (rutile TiO2) and in spherical shapes (anatase TiO2) into deionized water. The effect of the TiO2 nanoparticles on the crystallization behaviors of the nanofluids were investigated using differential scanning calorimetry (DSC). The weight fraction of the TiO2 nanoparticles was 0.05%, 0.30% and 0.70%. The experimental results show that in the cooling rate range of 1.5–9.0°C/min, the nanofluids with rutile TiO2 nanoparticles had higher crystallization temperatures compared with deionized water and the nanofluids with anatase TiO2 nanoparticles, and the heat of crystallization of the rutile TiO2 nanofluid was larger than that of the anatase TiO2 nanofluid. It is found that the rutile TiO2 nanofluid is more suitable than the anatase TiO2 nanofluid for ice storage system under the experimental conditions. Moreover, some unexpected data were obtained, which show that the shapes of the crystallization temperature curves of the nanofluids were like symbols of inverse “N” at 0.5–9.0°C/min, and that the crystallization temperatures of some of the nanofluids were lower than that of the deionized water at low cooling rates. The mechanisms for the unusual phenomenon were discussed.

Keywords: Nanofluid; Crystallization temperature; Latent heat; Half crystallization time; DSC; TiO2 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911004594
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:93:y:2012:i:c:p:65-70

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.07.014

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:65-70