Forecasting nonlinear time series of energy consumption using a hybrid dynamic model
Yi-Shian Lee and
Lee-Ing Tong
Applied Energy, 2012, vol. 94, issue C, 256 pages
Abstract:
Energy consumption is an important index of the economic development of a country. Rapid changes in industry and the economy strongly affect energy consumption. Although traditional statistical approaches yield accurate forecasts of energy consumption, they may suffer from several limitations such as the need for large data sets and the assumption of a linear formula. This work describes a novel hybrid dynamic approach that combines a dynamic grey model with genetic programming to forecast energy consumption. This proposed approach is utilized to forecast energy consumption because of its excellent accuracy, applicability to cases with limited data sets and ease of computability using mathematical software. Two case studies of energy consumption demonstrate the reliability of the proposed model. Computational results indicate that the proposed approach outperforms other models in forecasting energy consumption.
Keywords: Energy consumption; Grey forecasting model; Genetic programming; Hybrid dynamic approach (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912000694
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:94:y:2012:i:c:p:251-256
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.01.063
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().