EconPapers    
Economics at your fingertips  
 

Forecasting nonlinear time series of energy consumption using a hybrid dynamic model

Yi-Shian Lee and Lee-Ing Tong

Applied Energy, 2012, vol. 94, issue C, 256 pages

Abstract: Energy consumption is an important index of the economic development of a country. Rapid changes in industry and the economy strongly affect energy consumption. Although traditional statistical approaches yield accurate forecasts of energy consumption, they may suffer from several limitations such as the need for large data sets and the assumption of a linear formula. This work describes a novel hybrid dynamic approach that combines a dynamic grey model with genetic programming to forecast energy consumption. This proposed approach is utilized to forecast energy consumption because of its excellent accuracy, applicability to cases with limited data sets and ease of computability using mathematical software. Two case studies of energy consumption demonstrate the reliability of the proposed model. Computational results indicate that the proposed approach outperforms other models in forecasting energy consumption.

Keywords: Energy consumption; Grey forecasting model; Genetic programming; Hybrid dynamic approach (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912000694
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:94:y:2012:i:c:p:251-256

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.01.063

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:94:y:2012:i:c:p:251-256