EconPapers    
Economics at your fingertips  
 

Ethanolysis of camelina oil under supercritical condition with hexane as a co-solvent

Tapaswy Muppaneni, Harvind K. Reddy, Prafulla D. Patil, Peter Dailey, Curtis Aday and Shuguang Deng

Applied Energy, 2012, vol. 94, issue C, 84-88

Abstract: Non-catalytic transesterification of camelina sativa oil under supercritical ethanol (SCE) conditions with hexane as a co-solvent was investigated to study the fatty acid ethyl ester (FAEE) yields. This process enables simultaneous transesterification of triglycerides and ethyl esterification of fatty acids in a shorter reaction of time and may reduce the energy consumption due to simplified separation and purification steps. It was found that the co-solvent plays a vital role in reducing the severity of critical operational parameters and maximizes the biodiesel yield. The important variables affecting the ethyl ester yield during the transesterification reaction are the molar ratio of alcohol/oil, reaction time, reaction temperature and co-solvent to oil ratio. Camelina biodiesel samples were analyzed using FT–IR, GC–MS and thermogravimetric analysis (TGA) methods. The fuel properties of camelina biodiesel produced were compared with those of the regular diesel and found to be conforming to the American Society for Testing and Materials (ASTMs) standards.

Keywords: Camelina sativa oil; Transesterification; Supercritical ethanol; Hexane; Ethyl ester (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912000293
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:94:y:2012:i:c:p:84-88

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.01.023

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:94:y:2012:i:c:p:84-88