Dynamic modelling of an activated carbon–methanol adsorption refrigeration tube with considerations of interfacial convection and transient pressure process
Yongling Zhao,
Eric Hu and
Antoni Blazewicz
Applied Energy, 2012, vol. 95, issue C, 276-284
Abstract:
In the present study, a dynamic model of the adsorption refrigeration cycle was established with the consideration of interfacial convective heat transfer within adsorbent particles. In the model, a concept and mathematical definition of a transient pressure process at the beginning of the traditionally considered isobaric adsorption process are introduced. The model was solved numerically and experimentally verified in terms of the adsorbent/adsorbate temperature development, system pressure variation, and dynamic adsorption/desorption amount. A temperature jump at the beginning of the adsorption process was experimentally identified and was successfully predicted in the numerical simulation with the introduction of a transient pressure process. Numerical results simulated with the newly introduced transient pressure process and the traditional constant pressure process were compared. The comparison shows that the introduced transient pressure process can significantly improve the accuracy of the presented model. In addition, a notable adsorbate migration phenomenon was discussed according to the abnormal temperature development in the processes of isosteric heating and cooling. The present model can be used for a valve-controlled and long cycle-time based ART and other systems with similar operating procedures.
Keywords: Adsorption refrigeration tube; Interfacial convection; Transient pressure; Dynamic modelling (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912001493
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:95:y:2012:i:c:p:276-284
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.02.050
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().