EconPapers    
Economics at your fingertips  
 

Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells

M.S. Ismail, K.J. Hughes, D.B. Ingham, L. Ma and M. Pourkashanian

Applied Energy, 2012, vol. 95, issue C, 50-63

Abstract: A 3-dimensional model for an in-house proton exchange membrane (PEM) fuel cell with serpentine channels has been developed in order to investigate the sensitivity of the fuel cell performance to the anisotropic gas permeability and electrical conductivity of gas diffusion layers (GDLs). For a realistic range of transport properties being investigated, the fuel cell performance was found to be very sensitive to the electrical conductivity but almost insensitive to the gas permeability of the GDL. For the given operating conditions, the current density was found to be a maximum in the vicinity of the edge between the flow channel and the rib of the current collector. Since the most common GDL materials present a rather significant anisotropy in the in-plane directions, the effects of such anisotropy has been evaluated. Given that the through-plane conductivity is maintained constant for all the cases investigated, for a realistic range of the in-plane electrical conductivity, the fuel cell performance was found to be almost insensitive to this parameter. Therefore such anisotropy can be practically ignored. Finally, for single phase operating conditions, the U-bend in the serpentine channel has no effect on the overall performance of the fuel cell. Hence, only a straight channel of the fuel cell may be modelled and used as a quick performance indicator.

Keywords: PEM fuel cells; Gas diffusion layers; Gas permeability; Electrical conductivity; CFD model; Anisotropic transport properties (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912000955
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:95:y:2012:i:c:p:50-63

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.02.003

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:95:y:2012:i:c:p:50-63