EconPapers    
Economics at your fingertips  
 

Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints

Tiago Sousa, Hugo Morais, João Soares and Zita Vale

Applied Energy, 2012, vol. 96, issue C, 183-193

Abstract: Energy resource scheduling becomes increasingly important, as the use of distributed resources is intensified and massive gridable vehicle use is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and of gridable vehicles, usually referred as Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with V2G owners. It takes into account these contracts, the users’ requirements subjected to the VPP, and several discharge price steps. Full AC power flow calculation included in the model allows taking into account network constraints.

Keywords: Day-ahead scheduling; Distributed generation; Energy resource management; Smart grid; Vehicle-to-Grid; Virtual power player (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (41)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912000591
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:96:y:2012:i:c:p:183-193

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.01.053

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:183-193