EconPapers    
Economics at your fingertips  
 

Assessing models for parameters of the Ångström–Prescott formula in China

Xiaoying Liu, Yinlong Xu, Xiuli Zhong, Wenying Zhang, John Roy Porter and Wenli Liu

Applied Energy, 2012, vol. 96, issue C, 327-338

Abstract: Application of the Ångström–Prescott (A–P) model, one of the best rated global solar irradiation (Rs) models based on sunshine, is often limited by the lack of model parameters. Increasing the availability of its parameters in the absence of Rs measurement provides an effective way to overcome this problem. Although some models relating the A–P parameters to other variables have been developed, they generally lack worldwide validity test. Using data from 80 sites covering three agro-climatic zones in China, we evaluated seven models that relate the parameters to annual average of relative sunshine (n/N¯) (models 1–2), altitude (model 7), altitude and n/N¯ (model 3), altitude, n/N¯ and latitude (model 4), altitude and latitude (model 5) and annual average air temperature (model 6). It was found that model 7 performed best, followed by models 6, 1, 3, 2 and 4. The better performance of models 7 and 6 and the fact that they used fewer sites and variables in their establishment demonstrated that using a large dataset in developing the A–P parameter model or having more variables included is no guarantee of wider applicability, and that the local climatic regime may override other factors in the parameter modeling. This also suggests that applicability of a Rs model is not proportional to its complexity. The common feature of the better performing models suggests that accurate modeling of parameter a is more important than that of b. Therefore, priority should be given to parameter models having higher accuracy for a. Comparison of predicted against the calibrated A–P parameters revealed many unrealistic predictions by model 5, with which it was possible to obtain meaningful Rs estimates. To ensure that a parameter model is conceptually consistent and related to reality, it is necessary to check the modeled parameters against the calibrated ones. Models 1, 6 and 7 showed an advantage in keeping the physical meaning of their modeled parameters due to the small magnitude of n/N¯ and the use of the relation of (a+b) versus other variables as a constraint, respectively. All models tended to perform best in zone II and poorest in zone I in predicting Rs, indicating larger errors in humid climates. Since most productive agricultural areas in China are located in zone I, developing parameter models tailored to this zone would be valuable to improve Rs accuracy.

Keywords: Global solar irradiation; Ångström–Prescott; Parameter models (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911008890
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:96:y:2012:i:c:p:327-338

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.12.083

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:327-338