EconPapers    
Economics at your fingertips  
 

A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields

Han-Chieh Chiu, Jer-Huan Jang, Wei-Mon Yan, Hung-Yi Li and Chih-Cheng Liao

Applied Energy, 2012, vol. 96, issue C, 359-370

Abstract: In this work, a two-phase three-dimensional numerical transport model based on the two-fluid method for the proton exchange membrane fuel cells (PEMFCs) with parallel flow field, interdigitated flow field, and serpentine flow field has been presented to study the cell performance and transport phenomena in the PEMFCs. The effects of width, height and aspect ratio of the flow channel on the cell performance and water removal with different flow fields are under investigation. Results show the liquid water removal increases as the channel height decreases, however, the cell performance decreases as well. It is also found that the cell performance decreases as the channel width increases in parallel flow field due to lower gas velocity with less water removal. The effect of channel aspect ratio approximate to 1 is particularly studied in this paper. It reveals that the cell performance is better as the channel cross-section area is smaller because of higher gas velocities.

Keywords: Flow field designs; Liquid water; Cell performance; Proton exchange membrane fuel cell; Numerical analysis (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912001614
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:96:y:2012:i:c:p:359-370

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.02.060

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:359-370