EconPapers    
Economics at your fingertips  
 

Model-based dynamic multi-parameter method for peak power estimation of lithium–ion batteries

Fengchun Sun, Rui Xiong, Hongwen He, Weiqing Li and Johan Eric Emmanuel Aussems

Applied Energy, 2012, vol. 96, issue C, 378-386

Abstract: A model-based dynamic multi-parameter method for peak power estimation is proposed for batteries and battery management systems (BMSs) used in hybrid electric vehicles (HEVs). The available power must be accurately calculated in order to not damage the battery by over charging or over discharging or by exceeding the designed current or power limit. A model-based dynamic multi-parameter method for peak power estimation of lithium–ion batteries is proposed to calculate the reliable available power in real time, and the design limits such as cell voltage, cell current, cell SoC, cell power are all used as its constraints; more importantly, the relaxation effect also is considered. Where, to improve the model’s accuracy, the ohmic resistance of Thevenin model for the lithium–ion battery has been refined; in order to further improve the polarization parameters identification precision, a genetic algorithm has been used to gain the optimal time constant. Lastly, a test with several consecutive Federal Urban Driving Schedules (FUDSs) profiles is carried to evaluate the model-based dynamic multi-parameter method for peak power estimation. The experimental and simulation results indicate that the model-based dynamic multi-parameter method for peak power estimation can calculate the terminal voltage and the current available power much more reliably and accurately.

Keywords: Hybrid electric vehicles; Peak power estimation; Lithium–ion battery; Thevenin model; Multi-parameter method (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (48)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912001626
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:96:y:2012:i:c:p:378-386

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.02.061

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:378-386