EconPapers    
Economics at your fingertips  
 

Thermogravimetric analysis and kinetic study of poplar wood pyrolysis

Katarzyna Slopiecka, Pietro Bartocci and Francesco Fantozzi

Applied Energy, 2012, vol. 97, issue C, 497 pages

Abstract: Poplar cultivated with Short Rotation Forestry (SRF) technique could be an important source of biomass. This dedicated crop could be produced to obtain solid biofuel transformed through combustion, pyrolysis or gasification into heat and power in CHP plants. In this work a kinetic study of the slow pyrolysis process of poplar wood (populus L.) is investigated with a thermogravimetric analyzer. A comparison of selected non-isothermal methods for analyzing solid-state kinetics data is presented. The weight loss was measured by TGA in nitrogen atmosphere. The samples were heated over a range of temperature from 298K to 973K with four different heating rates of 2, 5, 10, 15Kmin−1. The results obtained from thermal decomposition process indicate that there are three main stages such as dehydration, active and passive pyrolysis. In the DTG thermograms the temperature peaks at maximum weight loss rate changed with increasing heating rate. The activation energy and pre-exponential factor obtained by Kissinger method are 153.92kJmol−1 and 2.14×1012min−1, while, the same average parameters calculated from FWO and KAS methods are 158.58 and 157.27kJmol−1 and 7.96×1013 and 1.69×1013min−1, respectively. The results obtained from the first method represented actual values of kinetic parameters which are the same for the whole pyrolysis process, while the KAS and FWO methods presented apparent values of kinetic parameters, because they are the sum of the parameters of the physical processes and chemical reaction that occur simultaneously during pyrolysis. Experimental results showed that values of kinetic parameters obtained from three different methods are in good agreement, but KAS and FWO methods are more efficient in the description of the degradation mechanism of solid-state reactions. The devolatilization process was mathematically described by first order single reaction. The results of the kinetic study can be used in modeling devolatilization process through computational fluid dynamics (CFDs) to simulate mass and energy balances.

Keywords: TGA; Kinetics; Biomass; Model-free methods (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (50)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191100852X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:97:y:2012:i:c:p:491-497

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2011.12.056

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:97:y:2012:i:c:p:491-497