Experimental evaluation of strategies to increase the operating range of a biogas-fueled HCCI engine for power generation
Iván D. Bedoya,
Samveg Saxena,
Francisco J. Cadavid,
Robert W. Dibble and
Martin Wissink
Applied Energy, 2012, vol. 97, issue C, 618-629
Abstract:
In this research oxygen enrichment, gasoline pilot port injection, and delayed time of 50% cumulative heat release (CA50) are evaluated to expand the range for stable and safe combustion of a lean-burning biogas-fueled HCCI engine. A 4-cylinder 1.9L Volkswagen TDI engine was modified to run in HCCI mode at 1800rpm, and boost pressures and charge heating are used to promote autoignition of the biogas-in-air mixture at desired combustion timings. A typical biogas composition of 60% CH4 and 40% CO2 in a volumetric basis was simulated by controlling the CH4 and CO2 flow rates. A range of 2–2.2bar absolute intake pressure and 473–483K initial charge temperatures allowed HCCI operation. At lowest equivalence ratio (0.25) excessive cycle-to-cycle variations were observed and at highest equivalence ratio (0.4) unacceptable ringing intensities were observed. To reduce cycle-to-cycle variability at low equivalence ratios, two strategies were used in enhancing the autoignition behavior of biogas: (1) oxygen enrichment of the inducted charge, and (2) gasoline pilot port injection. To increase gross Indicated Mean Effective Pressure (IMEPg) without excessive ringing intensities at high equivalence ratios, delayed CA50 was used. Oxygen enrichment increased cycle-to-cycle variability and total hydrocarbon emissions because of decreased burning rates and delayed CA50. Gasoline pilot port injection lowered cycle-to-cycle variability, CO and THC emissions, and increased IMEPg at low loads. Higher IMEPg was achieved with high equivalence ratios (above 0.4) and ringing intensities were kept within acceptable limits using delayed CA50, however NOx emission was increased also.
Keywords: HCCI engine; Power generation; Biogas; Oxygen enrichment; Gasoline pilot port injection; Delayed combustion (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912000141
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:97:y:2012:i:c:p:618-629
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.01.008
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().