Parametric sensitivity analysis of a SOLRGT system with the indirect upgrading of low/mid-temperature solar heat
Yuan Yuan Li,
Na Zhang and
Rui Xian Cai
Applied Energy, 2012, vol. 97, issue C, 648-655
Abstract:
Development of novel solar–fossil fuel hybrid system is important for the efficient utilization of low temperature solar heat. A solar-assisted methane chemically recuperated gas turbine (SOLRGT) system was proposed by Zhang and co-worker, which integrated solar heat into a high efficiency power system. The low temperature solar heat is first converted into vapor latent heat provided for a reformer, and then indirectly upgraded to high-grade generated syngas chemical energy by the reformation reaction. In this paper, based on the above mentioned cycle, a parametric analysis is performed using ASPEN PLUS code to further evaluate the effect of key thermodynamics parameters on the SOLRGT performance. It can be shown that solar collector temperature, steam/air mass ratio, turbine inlet pressure, and turbine inlet temperature have significant effects on system efficiency, solar-to-electricity efficiency, fossil fuel saving ratio, specific CO2 emission and so on. The solar collector temperature is varied between 140 and 240°C and the maximum net solar-to-electricity efficiency and system efficiency for a given turbine inlet condition (turbine inlet temperature of 1308°C and pressure ratio of 15) is 30.2% and 52.9%, respectively. The fossil fuel saving ratio can reach up to 21.8% and the reduction of specific CO2 emission is also 21.8% compared to the reference system. The system performance is promising for an optimum pressure ratio at a given turbine inlet temperature.
Keywords: Hybrid system; Solar heat; SOLRGT system; Sensitivity analysis (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911008087
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:97:y:2012:i:c:p:648-655
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.12.013
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().