Optimal offering strategy for a concentrating solar power plant
R. Dominguez,
L. Baringo and
A.J. Conejo
Applied Energy, 2012, vol. 98, issue C, 316-325
Abstract:
This paper provides a methodology to build offering curves for a concentrating solar power plant. This methodology takes into account the uncertainty in the thermal production from the solar field and the volatility of market prices. The solar plant owner is a price-taker producer that participates in a pool-based electricity market with the aim of maximizing its expected profit. To enhance the value of the concentrating solar power plant, a molten salt heat storage is considered, which allows producing electricity during periods without availability of the solar resource. To derive offering curves, a mixed-integer linear programming model is proposed, which is robust from the point of view of the uncertainty associated with the thermal production of the solar field and stochastic from the point of view of the uncertain market prices.
Keywords: Concentrating solar power plant; Electricity market; Robust optimization; Stochastic programming; Thermal energy storage (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912002619
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:98:y:2012:i:c:p:316-325
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.03.043
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().