Freezing of geothermal borehole surroundings: A numerical and experimental assessment with applications
Parham Eslami-nejad and
Michel Bernier
Applied Energy, 2012, vol. 98, issue C, 333-345
Abstract:
This study examines the thermal consequences of freezing the ground in the immediate vicinity of geothermal boreholes. First, a one-dimensional radial numerical heat transfer model is developed to evaluate heat transfer from the borehole wall to the ground. The model can account for multiple ground layers in the radial direction and phase change is handled using the effective capacity method. The results obtained from the model are in excellent agreement with the results given by analytical solutions for simple cases. A small-scale experimental set-up has also been built to validate the numerical model using temperature measurements. The apparatus mimics the behavior of a geothermal borehole and uses a homogeneous saturated laboratory-grade sand to reproduce unsaturated and saturated conditions. It is shown that the results of the numerical model are in good agreement with the experimental results.
Keywords: Heat pump; Geothermal; Borehole; Ground freezing; Solar injection; Double U-tube (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191200267X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:98:y:2012:i:c:p:333-345
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.03.047
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().