Relationships between meteorological variables and monthly electricity demand
Francesco Apadula,
Alessandra Bassini,
Alberto Elli and
Simone Scapin
Applied Energy, 2012, vol. 98, issue C, 346-356
Abstract:
Electricity demand depends on climatic condition and the influence of weather has been widely reported in the past. The main purpose of this study is to analyse the effect of the meteorological variability on the monthly electricity demand in Italy. Temperature, wind speed, relative humidity and cloud cover are considered; the calendar effect is also taken into account. A multiple linear regression model based on calendar and weather related variables is developed to study the relationships between meteorological variables and electricity demand as well as to predict the monthly electricity demand up to 1month ahead. The model has been extensively tested over the period 1994–2009 using different combinations of the weather related variables. Accuracies obtained are quite similar and range between 0.85% and 0.89%. Temperature turns out to be the most important variable. According to the month considered, a specific combination of the weather related variables can give the lowest Mean Absolute Percentage Error (MAPE) but differences are usually small. Good results for the summer months are obtained using Heat Index to calculate the Cooling Degree-Days; the cloud cover has a major influence from February to April.
Keywords: Electricity demand; Load forecasting; Meteorological influence; Regression model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (68)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912002735
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:98:y:2012:i:c:p:346-356
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.03.053
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().