EconPapers    
Economics at your fingertips  
 

Development of non-deform micro-encapsulated phase change energy storage tablets

J. Darkwa, O. Su and T. Zhou

Applied Energy, 2012, vol. 98, issue C, 447 pages

Abstract: This study evaluates the concept of developing a non-deform phase change energy storage material possessing higher thermal conductivity and energy storage density through pressure compaction process. The theoretical and experimental investigations have shown that the technique is able to reduce porosity and increase conductivity and energy storage density of a composite material. Even though there was some measure of plastoelasticity due to decompression, the average porosity was reduced from 62% to 23.8% at a relatively low compaction pressure of 2.8MPa without any structural damage to the tested sample. The mean energy storage density increased by 97% and the effective thermal conductivity also increased by twenty five times despite 10% reduction in its latent heat capacity. There is however the need for further development towards minimising the effect of decompression and achieving stronger energy storage tablets at relatively low compaction force.

Keywords: Phase change material; Non-deformed; Tablet; Energy storage density (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912002929
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:98:y:2012:i:c:p:441-447

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.04.006

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:441-447