EconPapers    
Economics at your fingertips  
 

Low calorific value fuelled distributed combustion with swirl for gas turbine applications

Ahmed E.E. Khalil, Vaibhav K. Arghode, Ashwani K. Gupta and Sang Chun Lee

Applied Energy, 2012, vol. 98, issue C, 69-78

Abstract: Distributed combustion offers significant performance improvement with near zero emissions for industrial gas turbine applications. Our efforts to further develop zero emission distributed combustion are explored here by utilizing swirl to the flow. The beneficial aspects of distributed swirl combustion using a cylindrical geometry combustor has shown low emissions of NO and CO, and significantly improved pattern factor using methane as the fuel at high thermal intensity. Biofuels, syngas and landfill gases offer superior use in gas turbine combustion. However, they are characterized by their low calorific value. Results are presented here from the distributed swirl combustor with simulated low calorific value fuels with defined mixture of methane diluted with nitrogen. The calorific value of the fuel obtained provided comparable adiabatic flame temperature and flame speed to those characteristic of low to medium calorific value syngas fuels. The results are compared with the methane fueled combustor. Experimental results from the distributed swirl combustor using methane fuel at an equivalence ratio of 0.6 and a heat release intensity of 27MW/m3-atm showed low levels of NO (∼9PPM) and low CO (∼21PPM) under non-premixed conditions. Novel Premixed Combustion design demonstrated 4PPM of NO and 11PPM of CO. In contrast methane diluted with nitrogen resulted in a dramatic decrease of NO emissions (30–50%), to provide NO emission of 7PPM (for non-premixed case) and 2.8PPM (premixed case), at the same conditions, with minimal impact on CO for all the conditions examined here. The combustor provided no instability or flame flashback at higher fuel flow rates (to maintain the same thermal load as with methane fuel). Results obtained with different calorific value fuels on the emissions of NO and CO, lean stability limit and OH* chemiluminescence are presented. The results showed favorable operation of the distributed swirl combustor for applications with both high and low calorific value fuels, such as, methane, synfuel and landfill gases to power the gas turbines without any combustor modifications.

Keywords: Colorless distributed combustion (CDC); Ultra-low NOx and CO emission; Gas turbine combustion; Low calorific value fuel combustion; Swirl combustion (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912001754
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:98:y:2012:i:c:p:69-78

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.02.074

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:69-78