PDF models and synthetic model for the wind speed fluctuations based on the resolution of Langevin equation
Rudy Calif
Applied Energy, 2012, vol. 99, issue C, 173-182
Abstract:
Wind energy production is very sensitive to turbulent wind speed. Thus rapid variation of wind speed due to changes in the local meteorological conditions can lead to electrical power variations of the order of the nominal power output, in particular when wind power variations on very short time scales, range at few seconds to 1h, are considered. In small grid as they exist on islands (Guadeloupean Archipelago: French West Indies) such fluctuations can cause instabilities in case of intermediate power shortages. The developed analysis in [14] reveals three main classes of time series for the wind speed fluctuations. In this work, Probability Density Functions (PDFs) are proposed to fit the wind speed fluctuations distributions in each class. After, to simulate wind speed fluctuations sequences, we use a stochastic differential equation, the Langevin equation considering Gaussian turbulence PDF (class I), Gram–Charlier PDF (class II) and a mixture of gaussian PDF (class III). The statistical and dynamical properties of simulated wind sequences are close to those of measured wind sequences, for each class.
Keywords: Wind speed fluctuations; Probability Density Functions; Gram–Charlier series; Langevin equation; Fokker–Planck equation; Mixture of PDF (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912003558
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:99:y:2012:i:c:p:173-182
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.05.007
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().