EconPapers    
Economics at your fingertips  
 

Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective

Aimaro Sanna, Marco Dri, Matthew R. Hall and Mercedes Maroto-Valer

Applied Energy, 2012, vol. 99, issue C, 545-554

Abstract: This work reviews the advantages and disadvantages of using mineral wastes for CCS and their potential in CO2 abatement, highlighting the potential applications and scenarios. This study indicates that a variety of inorganic waste materials such as pulverised fuel ash, municipal solid waste ash, cement kiln dust, biomass and paper sludge ash and sewage sludge ash are available feedstocks for Carbon Capture and Storage by Mineralisation (CCSM) in the UK. The high variability of both the waste amounts and chemical composition represent a major obstacle to the deployment of these materials in CCSM. Currently, mineral waste resources for mineral carbonation have the theoretical potential to capture about 1Mt/year CO2 in the UK, considering only the materials not recycled that are currently sent to landfill. Moreover, inorganic waste as a CCSM resource is in many ways more complex than the use of natural minerals due to uncertainty on future availability and high chemical variability and might be viable only in niche applications. For example, the use of inorganic wastes (concrete waste and steel slag) and buffer solutions in spray trickle bed systems (able to sequester 50% of the CO2 entering the system) was estimated to have costs competitive with geological storage.

Keywords: Clean energy; Mineral carbonation; CCS; Solid waste; Waste reuse (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912004941
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:99:y:2012:i:c:p:545-554

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.06.049

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:99:y:2012:i:c:p:545-554