EconPapers    
Economics at your fingertips  
 

Conditions for continuity of fractional velocity and existence of fractional Taylor expansions

Dimiter Prodanov

Chaos, Solitons & Fractals, 2017, vol. 102, issue C, 236-244

Abstract: Hölder functions represent mathematical models of nonlinear physical phenomena. This work investigates the general conditions of existence of fractional velocity as a localized generalization of ordinary derivative with regard to the exponent order. Fractional velocity is defined as the limit of the difference quotient of the function’s increment and the difference of its argument raised to a fractional power. A relationship to the point-wise Hölder exponent of a function, its point-wise oscillation and the existence of fractional velocity is established. It is demonstrated that wherever the fractional velocity of non-integral order is continuous then it vanishes. The work further demonstrates the use of fractional velocity as a tool for characterization of the discontinuity set of the derivatives of functions thus providing a natural characterization of strongly non-linear local behavior. A link to fractional Taylor expansions using Caputo derivatives is demonstrated.

Keywords: Singular functions; Hölder classes; Pseudodifferential operators; Approximation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917301947
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:102:y:2017:i:c:p:236-244

DOI: 10.1016/j.chaos.2017.05.014

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:236-244