Pricing of basket options in subdiffusive fractional Black–Scholes model
Gulnur Karipova and
Marcin Magdziarz
Chaos, Solitons & Fractals, 2017, vol. 102, issue C, 245-253
Abstract:
In this paper we generalize the classical multidimensional Black-Scholes model to the subdiffusive case. In the studied model the prices of the underlying assets follow subdiffusive multidimensional geometric Brownian motion. We derive the corresponding fractional Fokker–Plank equation, which describes the probability density function of the asset price. We show that the considered market is arbitrage-free and incomplete. Using the criterion of minimal relative entropy we choose the optimal martingale measure which extends the martingale measure from used in the standard Black–Scholes model. Finally, we derive the subdiffusive Black–Scholes formula for the fair price of basket options and use the approximation methods to compare the classical and subdiffusive prices.
Keywords: Black–Scholes model; Subdiffusion; Basket options; Stable process (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917301959
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:102:y:2017:i:c:p:245-253
DOI: 10.1016/j.chaos.2017.05.013
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().