Identification and validation of stable ARFIMA processes with application to UMTS data
Krzysztof Burnecki and
Grzegorz Sikora
Chaos, Solitons & Fractals, 2017, vol. 102, issue C, 456-466
Abstract:
In this paper we present an identification and validation scheme for stable autoregressive fractionally integrated moving average (ARFIMA) time series. The identification part relies on a recently introduced estimator which is a generalization of that of Kokoszka and Taqqu and a new fractional differencing algorithm. It also incorporates a low-variance estimator for the memory parameter based on the sample mean-squared displacement. The validation part includes standard noise diagnostics and backtesting procedure. The scheme is illustrated on Universal Mobile Telecommunications System (UMTS) data collected in an urban area. We show that the stochastic component of the data can be modeled by the long memory ARFIMA. This can help to monitor possible hazards related to the electromagnetic radiation.
Keywords: ARFIMA process; Stable distribution; Long memory; UMTS data (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917301200
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:102:y:2017:i:c:p:456-466
DOI: 10.1016/j.chaos.2017.03.059
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().