EconPapers    
Economics at your fingertips  
 

Energy methods for fractional Navier–Stokes equations

Yong Zhou, Li Peng, Bashir Ahmad and Ahmed Alsaedi

Chaos, Solitons & Fractals, 2017, vol. 102, issue C, 78-85

Abstract: In this paper we make use of energy methods to study the Navier–Stokes equations with time-fractional derivative. Such equations can be used to simulate anomalous diffusion in fractal media. In the first step, we construct a regularized equation by using a smoothing process to transform unbounded differential operators into bounded operators and then obtain the approximate solutions. The second part describes a procedure to take a limit in the approximation program to present a global solution to the objective equation.

Keywords: Navier-Stokes equations; Caputo fractional derivative; Energy methods; Approximate solutions (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791730111X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:102:y:2017:i:c:p:78-85

DOI: 10.1016/j.chaos.2017.03.053

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:78-85