On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations
R. Sahadevan and
P. Prakash
Chaos, Solitons & Fractals, 2017, vol. 104, issue C, 107-120
Abstract:
Lie symmetry analysis and invariant subspace methods of differential equations play an important role separately in the study of fractional partial differential equations. The former method helps to derive point symmetries, symmetry algebra and admissible exact solution, while the later one determines admissible invariant subspace as well as to derive exact solution of fractional partial differential equations. In this article, a comparison between Lie symmetry analysis and invariant subspace methods is presented towards deriving exact solution of the following coupled time fractional partial differential equations: (i) system of fractional diffusion equation, (ii) system of fractional KdV type equation, (iii) system of fractional Whitham-Broer-Kaup’s type equation, (iv) system of fractional Boussinesq-Burgers equation and (v) system of fractional generalized Hirota-Satsuma KdV equation.
Keywords: Lie group formalism; Invariant subspace method; System of time fractional PDEs; Exact solutions; Riemann-Liouville fractional derivative (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917303107
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:104:y:2017:i:c:p:107-120
DOI: 10.1016/j.chaos.2017.07.019
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().