Analyzing chaos in higher order disordered quartic-sextic Klein-Gordon lattices using q-statistics
Chris G. Antonopoulos,
Charalampos Skokos,
Tassos Bountis and
Sergej Flach
Chaos, Solitons & Fractals, 2017, vol. 104, issue C, 129-134
Abstract:
In the study of subdiffusive wave-packet spreading in disordered Klein–Gordon (KG) nonlinear lattices, a central open question is whether the motion continues to be chaotic despite decreasing densities, or tends to become quasi-periodic as nonlinear terms become negligible. In a recent study of such KG particle chains with quartic (4th order) anharmonicity in the on-site potential it was shown that q−Gaussian probability distribution functions of sums of position observables with q > 1 always approach pure Gaussians (q=1) in the long time limit and hence the motion of the full system is ultimately “strongly chaotic”. In the present paper, we show that these results continue to hold even when a sextic (6th order) term is gradually added to the potential and ultimately prevails over the 4th order anharmonicity, despite expectations that the dynamics is more “regular”, at least in the regime of small oscillations. Analyzing this system in the subdiffusive energy domain using q-statistics, we demonstrate that groups of oscillators centered around the initially excited one (as well as the full chain) possess strongly chaotic dynamics and are thus far from any quasi-periodic torus, for times as long as t=109.
Keywords: Klein–Gordon; Wave packet spreading; Chaotic dynamics; Quasi-periodic motion; Subdiffusive regime; q-Gaussian; q-statistics; Tsallis entropy (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917303259
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:104:y:2017:i:c:p:129-134
DOI: 10.1016/j.chaos.2017.08.005
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().