Stochastic degradation of the fixed-point version of 2D-chaotic maps
L. De Micco,
M. Antonelli and
H.A. Larrondo
Chaos, Solitons & Fractals, 2017, vol. 104, issue C, 477-484
Abstract:
This paper deals with a family of interesting 2D-quadratic maps proposed by Sprott, in his seminal paper [1], related to “chaotic art”. Our main interest about these maps is their great potential for using them in digital electronic applications because they present multiple chaotic attractors depending on the selected point in the parameter’s space. Only results for the analytical representation of these maps have been published in the open literature. Consequently, the objective of this paper is to extend the analysis to the digital version, to make possible the hardware implementation in a digital medium, like field programmable gate arrays (FPGA) in fixed-point arithmetic. Our main contributions are: (a) the study of the domains of attraction in fixed-point arithmetic, in terms of period lengths and statistical properties; (b) the determination of the threshold of the bus width that preserves the integrity of the domain of attraction and (c) the comparison between two quantifiers based on respective probability distribution functions (PDFs) and the well known maximum Lyapunov exponent (MLE) to detect the above mentioned threshold.
Keywords: 2D-Quadratic map; Randomness quantifier; Finite precision; Chaotic map’s degradation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917303776
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:104:y:2017:i:c:p:477-484
DOI: 10.1016/j.chaos.2017.09.007
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().