Two-stage method for fractal dimension calculation of the mechanical equipment rough surface profile based on fractal theory
Yao Liu,
Yashun Wang,
Xun Chen,
Chunhua Zhang and
Yuanyuan Tan
Chaos, Solitons & Fractals, 2017, vol. 104, issue C, 495-502
Abstract:
The determination of fractal dimension of rough surface profile curve is important for characterizing the fractal features of rough surface microscopic topography. There are many methods to calculate the fractal dimension, such as the power spectrum method (PSM), the structure function method (SFM), the variation method, the R/S analysis method, the wavelet transform method and etc., among which the PSM and SFM are widely used methods. This study aims to improve the computational accuracy of the fractal dimension of the profile curve. For this purpose, the two-stage method based on PSM and SFM are proposed. Firstly, we analyze the principle of calculating the fractal dimension of profile curve using PSM and SFM. Then, based on PSM and SFM, we propose a two-stage method for determining the fractal dimension of profile curve. Simulation results show that the two-stage method for fractal dimension of profile curve can greatly reduce the error compared with the original PSM and SFM. Finally, the fractal dimensions of the profile curve of the cuboid specimen are calculated by the original PSM and SFM and the two-stage method respectively. The experimental results show that the proposed method provides more precise results for determining the fractal dimension.
Keywords: Fractal theory; Fractal dimension; Two-stage method; Cubic spline interpolation; Surface profile curve (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917303806
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:104:y:2017:i:c:p:495-502
DOI: 10.1016/j.chaos.2017.09.012
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().