EconPapers    
Economics at your fingertips  
 

Mathematical modelling of physically/geometrically non-linear micro-shells with account of coupling of temperature and deformation fields

J. Awrejcewicz, V.A. Krysko, A.A. Sopenko, M.V. Zhigalov, A.V. Kirichenko and A.V. Krysko

Chaos, Solitons & Fractals, 2017, vol. 104, issue C, 635-654

Abstract: A mathematical model of flexible physically non-linear micro-shells is presented in this paper, taking into account the coupling of temperature and deformation fields. The geometric non-linearity is introduced by means of the von Kármán shell theory and the shells are assumed to be shallow. The Kirchhoff-Love hypothesis is employed, whereas the physical non-linearity is yielded by the theory of plastic deformations. The coupling of fields is governed by the variational Biot principle. The derived partial differential equations are reduced to ordinary differential equations by means of both the finite difference method of the second order and the Faedo-Galerkin method. The Cauchy problem is solved with methods of the Runge-Kutta type, i.e. the Runge-Kutta methods of the 4th (RK4) and the 2nd (RK2) order, the Runge-Kutta-Fehlberg method of the 4th order (rkf45), the Cash-Karp method of the 4th order (RKCK), the Runge-Kutta-Dormand-Prince (RKDP) method of the 8th order (rk8pd), the implicit 2nd-order (rk2imp) and 4th-order (rk4imp) methods. Each of the employed approaches is investigated with respect to time and spatial coordinates. Analysis of stability and nature (type) of vibrations is carried out with the help of the Largest Lyapunov Exponent (LLE) using the Wolf, Rosenstein and Kantz methods as well as the modified method of neural networks.

Keywords: Micro-shells; Coupled thermo-elasticity; Lyapunov exponents; Finite difference method; Faedo-Galerkin method; Runge-Kutta type methods; Theorem of solution existence; A priori estimates (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917303739
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:104:y:2017:i:c:p:635-654

DOI: 10.1016/j.chaos.2017.09.008

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:635-654