Self-induced transparency of the optical phonons
Aikaterini Mandilara,
Zoran Ivić,
Dalibor Čevizović and
Željko Pržulj
Chaos, Solitons & Fractals, 2017, vol. 105, issue C, 14-20
Abstract:
We show that the self-induced transparency of optical phonons may appear in a systems consisting of a two level atoms interacting with elastic waves. The presence of the gap in phonon spectrum substantially enhances the pulse delay in respect to the acoustic self induced transparency phenomena. One of the main characteristics of the predicted phenomenon is the appearance of the critical velocity of the self-induced transparency pulse which, in the absorbing media, represents the upper limit which pulse may reach. Its magnitude is determined by the ratio of the phonon gap and the energy difference of the two level system. This feature opens a new way for the control of the speed of elastic waves. We believe that, in the view of the emerging new quantum technologies relying on creation and trapping of the coherent phonons interacting with artificial atoms, some practical implementations of interest for the storage and manipulation of quantum information may be realised on the basis of our work.
Keywords: Self-induced transparency; Superradiance; Soliton; Resonant propagation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917304101
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:105:y:2017:i:c:p:14-20
DOI: 10.1016/j.chaos.2017.10.002
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().