EconPapers    
Economics at your fingertips  
 

On the effective interfacial resistance through quasi-filling fractal layers

Raffaela Capitanelli and Cristina Pocci

Chaos, Solitons & Fractals, 2017, vol. 105, issue C, 43-50

Abstract: This paper concerns the periodic homogenization of the stationary heat equation in a domain with two connected components, separated by an oscillating interface defined on prefractal Koch type curves. The problem depends both on the parameter ε that defines the periodic structure of the interface and on n, which is the index of the prefractal iteration. First, we study the limit as ε vanishes, showing that the homogenized problem is strictly dependent on the amplitude of the oscillations and the parameter appearing in the transmission condition. Finally, we perform the asymptotic behaviour as n goes to infinity, giving rise to a limit problem defined on a domain with fractal interface.

Keywords: Homogenization; Prefractals and fractals; Elliptic operators; Asymptotics; Oscillating interface; Stationary heat equation (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917304046
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:105:y:2017:i:c:p:43-50

DOI: 10.1016/j.chaos.2017.09.036

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:105:y:2017:i:c:p:43-50