A new finding on pattern self-organization along the route to chaos
Huayong Zhang,
Shengnan Ma,
Tousheng Huang,
Xuebing Cong,
Hongju Yang and
Feifan Zhang
Chaos, Solitons & Fractals, 2018, vol. 106, issue C, 118-130
Abstract:
This research investigates pattern self-organization along the route to chaos in a space- and time-discrete predator–prey system, where the prey shows convection movement in space. Through analysis on Turing instability of the system, pattern self-organization conditions are determined. Based on the conditions, simulations are performed under two initial conditions, demonstrating two pattern transitions along the route to chaos. In the first pattern transition, the patterns start from regular stripes, experiencing twisted stripes, then return to regular stripes again. The second pattern transition is much more complex and shows three stages. Especially, an alternation between ordered patterns and disordered chaos is found, contributing greatly to the spatiotemporal complexity of the system. When the system stays at the homogeneous chaotic states, Turing instability driven by convection and diffusion can still force the self-organization of regular striped patterns. The finding in this research provides a new comprehending for pattern self-organization and transition in spatially extended predator–prey systems.
Keywords: Self-organization; Chaos; Predator–prey system; Spatiotemporal complexity; Turing instability (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791730471X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:106:y:2018:i:c:p:118-130
DOI: 10.1016/j.chaos.2017.11.016
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().