EconPapers    
Economics at your fingertips  
 

A regularity statistic for images

Tuan D. Pham and Hong Yan

Chaos, Solitons & Fractals, 2018, vol. 106, issue C, 227-232

Abstract: Measures of statistical regularity or complexity for time series are pervasive in many fields of research and applications, but relatively little effort has been made for image data. This paper presents a method for quantifying the statistical regularity in images. The proposed method formulates the entropy rate of an image in the framework of a stationary Markov chain, which is constructed from a weighted graph derived from the Kullback–Leibler divergence of the image. The model is theoretically equal to the well-known approximate entropy (ApEn) used as a regularity statistic for the complexity analysis of one-dimensional data. The mathematical formulation of the regularity statistic for images is free from estimating critical parameters that are required for ApEn.

Keywords: Image complexity; Entropy rate; Markov chain; Kullback–Leibler divergence; Regularity statistics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917304964
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:106:y:2018:i:c:p:227-232

DOI: 10.1016/j.chaos.2017.11.033

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:106:y:2018:i:c:p:227-232