KS–entropy and logarithmic time scale in quantum mixing systems
Ignacio S. Gomez
Chaos, Solitons & Fractals, 2018, vol. 106, issue C, 317-322
Abstract:
We present a calculus of the Kolmogorov–Sinai entropy for quantum systems having a mixing quantum phase space. The method for this estimation is based on the following ingredients: i) the graininess of quantum phase space in virtue of the Uncertainty Principle, ii) a time rescaled KS–entropy that introduces the characteristic time scale as a parameter, and iii) a mixing condition at the (finite) characteristic time scale. The analogy between the structures of the mixing level of the ergodic hierarchy and of its quantum counterpart is shown. Moreover, the logarithmic time scale, characteristic of quantum chaotic systems, is obtained.
Keywords: KS–entropy; Mixing; Graininess; Logarithmic time scale (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917305027
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:106:y:2018:i:c:p:317-322
DOI: 10.1016/j.chaos.2017.11.039
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().