EconPapers    
Economics at your fingertips  
 

KS–entropy and logarithmic time scale in quantum mixing systems

Ignacio S. Gomez

Chaos, Solitons & Fractals, 2018, vol. 106, issue C, 317-322

Abstract: We present a calculus of the Kolmogorov–Sinai entropy for quantum systems having a mixing quantum phase space. The method for this estimation is based on the following ingredients: i) the graininess of quantum phase space in virtue of the Uncertainty Principle, ii) a time rescaled KS–entropy that introduces the characteristic time scale as a parameter, and iii) a mixing condition at the (finite) characteristic time scale. The analogy between the structures of the mixing level of the ergodic hierarchy and of its quantum counterpart is shown. Moreover, the logarithmic time scale, characteristic of quantum chaotic systems, is obtained.

Keywords: KS–entropy; Mixing; Graininess; Logarithmic time scale (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917305027
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:106:y:2018:i:c:p:317-322

DOI: 10.1016/j.chaos.2017.11.039

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:106:y:2018:i:c:p:317-322