Invariant subspaces admitted by fractional differential equations with conformable derivatives
M.S. Hashemi
Chaos, Solitons & Fractals, 2018, vol. 107, issue C, 161-169
Abstract:
There are various types of fractional derivatives in literature. One of the most natural and well-behaved fractional derivatives is recently introduced by the authors Khalil et al. [34], namely the conformable fractional derivative. In this paper, some more results about conformable fractional Laplace transform introduced by Abdeljawad [43] are investigated. The invariant subspace method is developed to get the exact solutions of various conformable time fractional differential equations. Finally, this theory is extended for the coupled system of conformable fractional differential equations, as well.
Keywords: Conformable derivative; Conformable fractional Laplace transform; Invariant subspace method (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791830002X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:107:y:2018:i:c:p:161-169
DOI: 10.1016/j.chaos.2018.01.002
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().