On the Liouville integrability of Edelstein’s reaction system in R3
Antoni Ferragut,
Claudia Valls and
Carsten Wiuf
Chaos, Solitons & Fractals, 2018, vol. 108, issue C, 129-135
Abstract:
We consider Edelstein’s dynamical system of three reversible reactions in R3 and show that it is not Liouville (hence also not Darboux) integrable. To do so, we characterize its polynomial first integrals, Darboux polynomials and exponential factors.
Keywords: Reaction network; Polynomial system; Exponential factor; First integral; Deficiency theorem (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918300298
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:108:y:2018:i:c:p:129-135
DOI: 10.1016/j.chaos.2018.01.029
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().