Quantum chaos analysis for characterizing a photonic resonator lattice
S. Behnia,
J. Ziaei,
M. Khodavirdizadeh,
P. Hosseinnezhad and
F. Rahimi
Chaos, Solitons & Fractals, 2018, vol. 109, issue C, 154-159
Abstract:
Tailoring the propagation of light in an arbitrarily manner has motivated a great of interest on nanophotonics. As a new mechanism for this purpose, the generation of an effective magnetic field leading to a Lorentz force for photons is recently proposed in a photonic resonator lattice. Here, we consider a photonic resonator lattice with a harmonically modulated phase and with an interface splitting the lattice into two magnetically different regions. Considering this lattice, we try to explore the impact of phase and the location of interface on the localization of Hamiltonian eigenstates by applying level spacing distribution as a cornerstone of random matrix theory. The obtained results show that while the location of interface has no effect on the appearance of localized states in weak phases, in strong phases it is found a threshold value for location of interface above which all eigenstates are delocalized. As a result, level spacing distribution and so random matrix theory is capable of characterizing the behavior of a photon in regions with different magnetic properties.
Keywords: Light localization; Level spacing; Effective magnetic field; Photonic resonator lattice (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918300894
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:109:y:2018:i:c:p:154-159
DOI: 10.1016/j.chaos.2018.02.030
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().