Memory effect in a self-sustained birhythmic biological system
A. Chéagé Chamgoué,
G.S.M. Ngueuteu,
R. Yamapi and
P. Woafo
Chaos, Solitons & Fractals, 2018, vol. 109, issue C, 160-169
Abstract:
In this paper, birhythmicity in an enzymatic-substrate reaction described by a fractional-order extended van der Pol equation is investigated. The fractional derivatives are introduced in the system equations in order to model the memory property of the biological system. The residue harmonic balance scheme is used to study the periodic motions of the considered fractional-order van der Pol equations. It is shown that depending on system parameters and the fractional derivative order, the bistability area strongly increased. This fractional oscillator is analytically mapped, onto an ordinary bistable systems with a two stable amplitude. The obtained results clearly show an interesting collapse and revival of birhythmicity with the variation of the fractional derivative order. The amplitude and frequency of the fractional order van der Pol oscillator are derived. The analysis of amplitude equation corroborates with the results obtained by numerical simulations of the fractional-order differential equations describing the system.
Keywords: Fractional-order; Derivative; Hopf bifurcation; Birhythmicity (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918300845
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:109:y:2018:i:c:p:160-169
DOI: 10.1016/j.chaos.2018.02.027
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().