EconPapers    
Economics at your fingertips  
 

Stretched exponential stability of nonlinear Hausdorff dynamical systems

Wen Chen, Xindong Hei, Hongguang Sun and Dongliang Hu

Chaos, Solitons & Fractals, 2018, vol. 109, issue C, 259-264

Abstract: This paper proposes the definition of stretched exponential stability. First, a non-Debye decay is found in the nonlinear Hausdorff dynamical systems by using the Lyapunov direct method, which leads to the stretched exponential stability. It is worthy of noting that the classical exponential stability is a special case of the proposed stretched exponential stability, when the stretched parameter is in its limiting case equal to 1. Therefore the stretched exponential has more flexibility and applicability to the real-world problems than the classical exponential stability. Second, a fractal comparison principle is applied to obtain stability criteria for the proposed systems. Examples are presented to illustrate the applicability of the proposed concept.

Keywords: Lyapunov stability; Stretched exponential stability; Non-Debye decay; Nonautonomous system; Hausdorff dynamical systems (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918300997
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:109:y:2018:i:c:p:259-264

DOI: 10.1016/j.chaos.2018.03.002

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:109:y:2018:i:c:p:259-264