Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation
Xuejin Lv,
Xinzhu Meng and
Xinzeng Wang
Chaos, Solitons & Fractals, 2018, vol. 110, issue C, 273-279
Abstract:
This paper investigates a new impulsive stochastic chemostat model with nonlinear perturbation in a polluted environment. We present the analysis and the criteria of the extinction of the microorganisms, and establish sufficient conditions for the existence of a unique ergodic stationary distribution of the model via Lyapunov functions method. The results show that both stochastic noise and impulsive toxicant input have great effects on the survival and extinction of the microorganisms. Moreover, we provide a series of numerical simulations to illustrate the analytical results.
Keywords: Stochastic chemostat model; Nonlinear perturbation; Extinction; Stationary distribution (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918301413
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:110:y:2018:i:c:p:273-279
DOI: 10.1016/j.chaos.2018.03.038
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().