Clock pulse modulation for ripple reduction in buck-converter circuits
Daisuke Ito,
Hiroyuki Asahara,
Takuji Kousaka and
Tetsushi Ueta
Chaos, Solitons & Fractals, 2018, vol. 111, issue C, 138-145
Abstract:
DC–DC switching converters which are frequently treated as hybrid dynamical systems exhibit complex behavior due to nonlinear and interrupt characteristics. For synchronous buck-converters, we propose a method to control chaotic behavior by pulse–frequency modulation. An input voltage, a duty ratio of PWMs, and so on, affect to the regulation characteristics of converters directly, but a frequency of PWMs is determined by the frequency characteristics of the converter and is set as a fixed value. The proposed chaos-control method suppresses chaotic responses by slightly perturbing the pulse frequency alone, therefore our method can stabilize unstable periodic orbits without influence on the voltage regulation scheme. To simplify the feedback controller, the condition of dimension reduction for the controlling gain vector is derived. The proposed controller achieves the stabilization without a current sensor. Numerical simulation and circuit implementation demonstrate the validity of this method.
Keywords: Controlling chaos; Buck converter; Pulse–frequency modulation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918301589
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:111:y:2018:i:c:p:138-145
DOI: 10.1016/j.chaos.2018.04.015
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().