Nonlinear resonance and devil’s staircase in a forced planer system containing a piecewise linear hysteresis
Yuu Miino,
Tetsushi Ueta and
Hiroshi Kawakami
Chaos, Solitons & Fractals, 2018, vol. 111, issue C, 75-85
Abstract:
The Duffing equation describes a periodically forced oscillator model with a nonlinear elasticity. In its circuitry, a saturable-iron core often exhibits a hysteresis, however, a few studies about the Duffing equation has discussed the effects of the hysteresis because of difficulties in their mathematical treatment. In this paper, we investigate a forced planer system obtained by replacing a cubic term in the Duffing equation with a hysteresis function. For simplicity, we approximate the hysteresis to a piecewise linear function. Since the solutions are expressed by combinations of some dynamical systems and switching conditions, a finite-state machine is derived from the hybrid system approach, and then bifurcation theory can be applied to it. We topologically classify periodic solutions and compute local and grazing bifurcation sets accurately. In comparison with the Duffing equation, we discuss the effects caused by the hysteresis, such as the devil’s staircase in resonant solutions.
Keywords: Bifurcation analysis; Hybrid system; Nonlinear resonance; Duffing equation; Devil’s staircase; Chaos (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918301504
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:111:y:2018:i:c:p:75-85
DOI: 10.1016/j.chaos.2018.04.007
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().