Analysis of limit cycles and stochastic responses of a real-power vibration isolation system under delayed feedback control
Dongmei Huang,
Wei Li,
Guidong Yang and
Meijuan He
Chaos, Solitons & Fractals, 2018, vol. 112, issue C, 125-134
Abstract:
In this paper, the dynamical properties of a real-power vibration isolation system with delayed feedback control subjected to deterministic and stochastic excitations are considered. According to the free vibration analysis, it is found that a large number of limit cycles may be existed for certain time delay and feedback gain. Then, the relationship of amplitude and frequency is derived for the undamped system. For the system with harmonic excitation, multi-valued phenomena are observed due to the existence of the limit cycles. In this respect, with the change of time delay, in every period the response is similar to time delay island, and the number of islands is different under different excitation frequency. Additionally, for analyzing the complex dynamic properties, the vibration isolation system with Gauss white noise excitation is explored by the largest Lyapunov exponent and the stationary probability density. The symmetrical period-doubling bifurcation phenomenon is found and verified. Finally, by using Monte Carlo simulation, the stationary probability density is explored from original system. The change of time delays can induce the occurrence of stochastic bifurcation and the response from two peaks becomes triple peaks.
Keywords: Time delays; Nonlinear responses; Vibration isolation system; Stochastic excitations (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918302339
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:112:y:2018:i:c:p:125-134
DOI: 10.1016/j.chaos.2018.04.039
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().